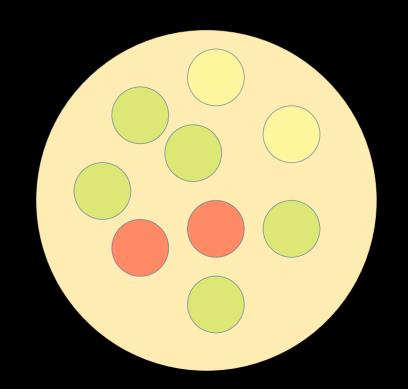
Epidemiología básica de enfermedades infecciosas

1) Eco-epidemiología básica de EI 2) Mediciones de frecuencia 3) Mediciones de efectos 4) Variaciones

MEDICINA DE LA CONSERVACIÓN Gerardo Martín

ECO-EPIDEMIOLOGÍA BÁSICA DE ENFERMEDADES INFECCIOSAS

Estados epidemiológicos de individuos


Infección

Inmunidad

Paradigma compartamental de la epidemiología

Individuos clasificados de acuerdo con estado infeccioso ó inmune

Una población se divide en compartimentos que representan número de individuos en cada edo

Población entera

Individuos sin enfermedad

Individuos enfermos

Individuos inmunes

Compartimentos del estado epidemiológico de individuos

M

Individuos con inmunidad **materna** (IgA) que se pierde rápidamente, evidencia de infección ancestral

S

Susceptibles.
Individuos sin inmunidad, que pueden infectarse

E

Expuestos.
Individuos
infectados, pero la
infección no se
desarrolla aún, no la
transmiten

I

Infectados.
Individuos
infectados que
transmiten la
infección a
susceptibles

L

Latentes. Individuos infectados, pero patógeno no causa enfermedad y tampoco la transmite. Pueden volverse R

Recuperados.
Individuos con inmunidad tras haber estado infectados

Vacunados.
Individuos con inmunidad tras haber sido vacunados

Compartimentos del edo. infeccioso

S

E

I

Presencia/ausencia de patógeno en individuo

En una epidemia individuos transitan de un edo. a otro:

$$S \rightarrow I$$

$$S \rightarrow E \rightarrow I$$

Compartimentos del edo. inmunitario

Tránsito de individuos:

 $M \rightarrow S$

 $I \rightarrow R$

 $S \rightarrow V$

 $R \rightarrow S$

 $V \rightarrow S$

Diferencia: origen de inmunidad

M: de la madre, quien debe haber estado expuesta y desarrolló inmunidad humoral

R: de haber estado infectado y desarrollado inmunidad humoral

V: de haber sido vacunado (inervencciones de salud pública)

Compartimentos mixtos

L proviene de las transiciones:

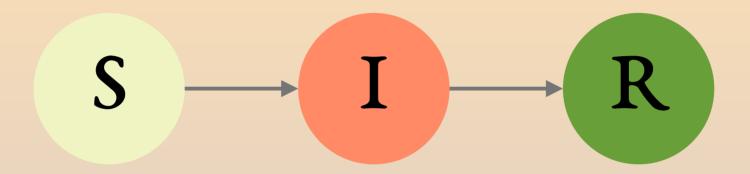
 $E \rightarrow L$

 $I \rightarrow L$

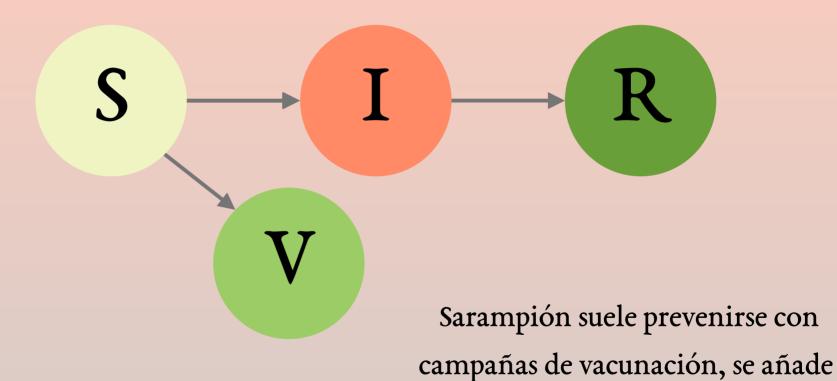
Puede resultar en las transiciones

$$I \rightarrow \Gamma \rightarrow I$$

$$E \rightarrow L \rightarrow I$$

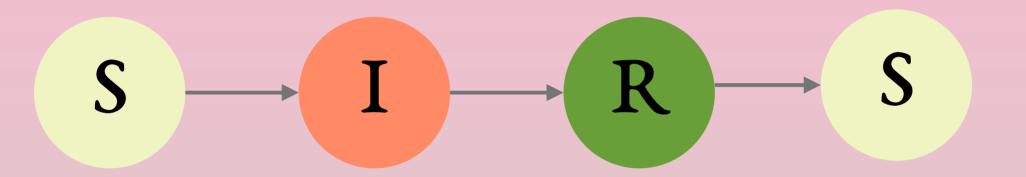

Latencia puede resultar de:

- Actividad **inmune** (humoral ó celular)
- Disminución de replicación del patógeno

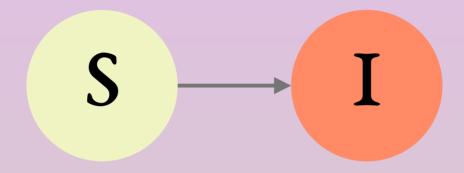


Transición de edos y relación hospederoparásito

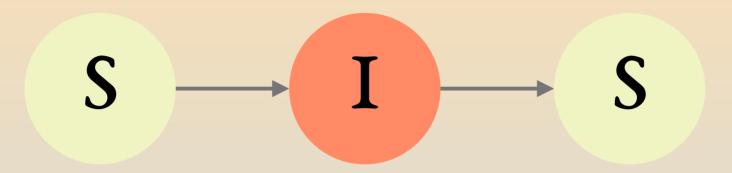
- Virus tienden a resultar en inmunidad de largo plazo (coronavirus, excepción)
- Bacterias: Inmunidad de corto plazo (leptospirosis y brucelosis, p. ej.)
- Protozoarios: Inmunidad poco efectiva vs infección (leishmaniasis, p. ej.)
- Hongos: Oportunistas (en general), inmunidad innata efectiva, adaptativa, no tanto



Enfermedades virales como Sarampión y Varicela



10

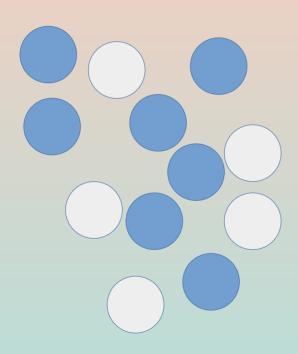

compartimento V

Enfermedades virales con inmunidad de corto plazo como las de coronavirus

VIH, con estados infecciosos no prevenibles por vacunación y poco tratables

Infecciones gastrointestinales bacterianas como salmonelosis

CUANTIFICACIÓN Y FRECUENCIA DE ENFERMEDAD

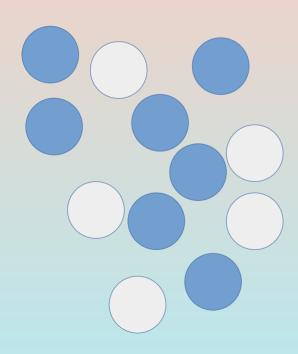

¿Cómo se puede medir?

¿Es importante el papel del tiempo?

¿Qué hay de las diferencias entre individuos y a nivel población?

¿Qué entienden por "mediciones epidemiológicas"?

Número de casos



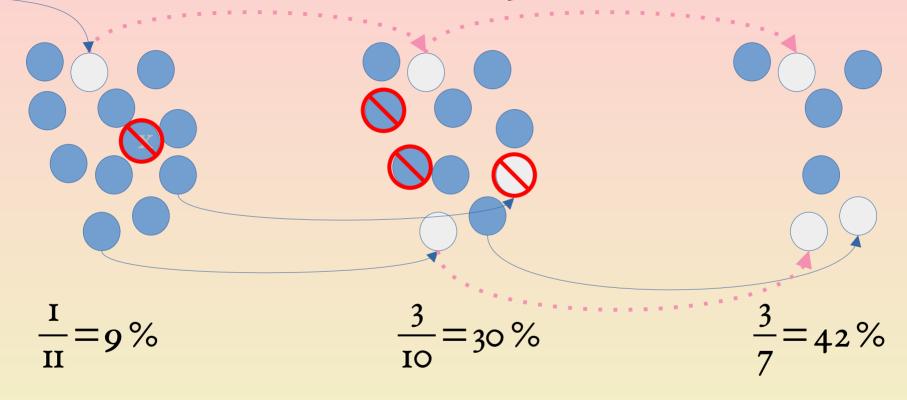
Población total de infectados

4 grises infectados

No toma en cuenta el tamaño de la población en riesgo/expuesta

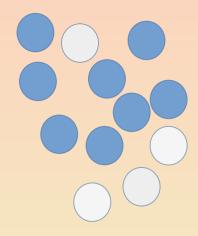
Prevalencia (población)

Fracción de la población con la infección ó enfermedad


Ejemplo:

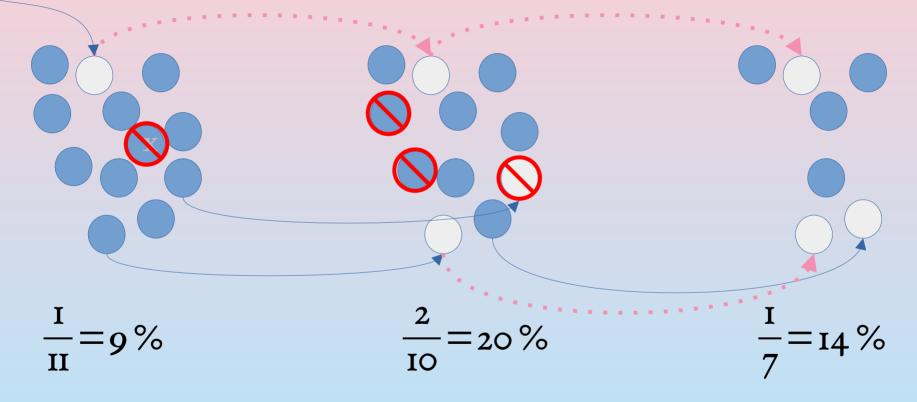
7 azules susceptibles

4 grises infectados


$$4/II = 36\%$$

Prevalencia puntual

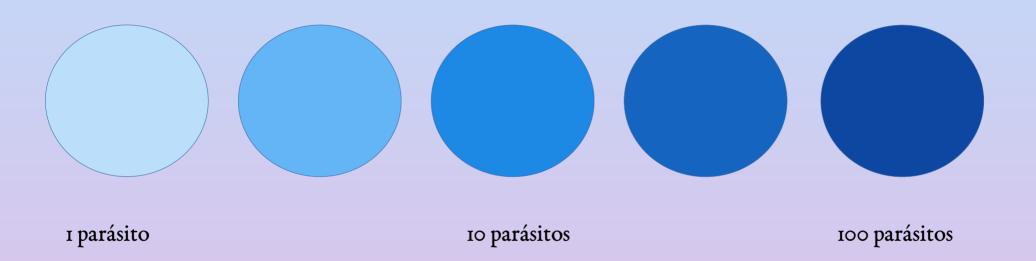
Proporción de la población infectada por período de tiempo


Prevalencia acumulada

$$\frac{4}{11} = 36\%$$

Proporción de la población en todo el período de análisis

Incidencia


Proporción de la población que representa casos nuevos de infección en un período de tiempo

Variaciones en la representación de la incidencia

$$Raz \acute{o}n = \frac{\# \operatorname{casos}}{\# \operatorname{población}} \times \operatorname{10}^n$$

$$\frac{1}{11} \times 10^{3} = 90 \qquad \frac{2}{10} \times 10^{4} = 2000 \qquad \frac{1}{7} \times 10^{5} = 14 K$$
casos por K hab casos por 10K hab casos por 100 K hab

Intensidad de infección

Otras medidas de frecuencia derivadas de prevalencia

RAZÓN DE MOMIOS (ODDS RATIO—OR ING.)

RAZÓN DE RIESGO (RISK RATIO—RR ING)

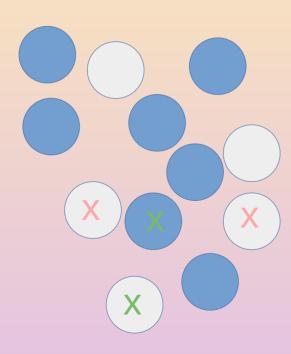
$$OR = \frac{I}{S} = \frac{Prev}{I - Prev}$$

$$RR = \frac{I}{N} = Prev$$

I = Individuos infectados

S = Individuos no infectados

N = Población entera (S + I)

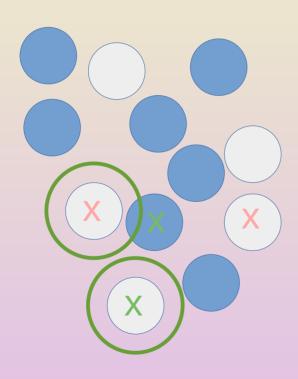

EFECTOS DE LA ENFERMEDAD EN LA POBLACIÓN

Mortalidad

Fatalidad

Virulencia

Tasa de mortalidad

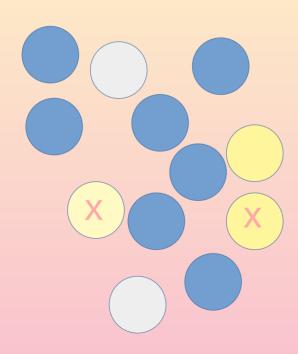


Fracción de infectados que mueren por la enfermedad

Ejemplo:

2 grises infectados que mueren por enfermedad

Fatalidad por caso



Fracción de infectados detectados que mueren por la enfermedad

Ejemplo:

Sólo se detectaron 2 casos, de los cuales 1 murió por la enfermedad:

Virulencia/Morbilidad

Fracción de casos que desarrollan enfermedad grave (puede o no resultar en muerte)

Si de 5 casos, 3 (círculos amarillos) cumplen con criterio (hospitalización, p. ej.)

Virulencia:

En resumen

- Frecuencia
 - Progreso temporal de infección
 - Impacto potencial de infección en población
- Intensidad
 - Carga infecciosa por individuo

- Efectos
 - Impacto esperado sobre población con base en estadísticas de frecuencia y distribución de intensidad (en caso de ser cuantificable)