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Figure 1.2: Numbers of insect species on a small mangrove island following defaunation.
(From Simberloff and Wilson 1970, Fig. 1. © 1970 Ecological Society of America. Reprinted
with permission of the publisher.)

4. Provide “insight” to managers or planners (or others) by performing “what-if”
simulations (“‘gaming”).

1.3 Example: Island Biogeography

A biological example will help clarify some of these concepts. Biogeography is a
discipline that combines elements of ecology and geographys; its primary objective is
to describe and explain the spatial distribution of plants and animals on the Earth’s
surface. The spatial scale for this field is broad: landmasses on the order of conti-
nents and large islands. Mapping the geographical distributions of species is a major
component of biogeography, but it also examines patterns of numbers of species over
geographical space. Island biogeography is a subdiscipline which restricts itself to
islands.

1.3.1 Physical Setting

Ecologically, an island can be a true, oceanic island, or it can be a habitat island such as
a patch of forest in a fragmented landscape. Biogeographers are interested in the final
number of species that will occur on the island as well as the dynamics of the build-up
of species on new islands or the extinction of species as island conditions change. An
impressive field experiment performed by D. Simberloff and E. O. Wilson (Simberloff
and Wilson 1970) tracked the number of insects on small mangrove islands following
complete defaunation. The dynamics of numbers of species is shown in Fig. 1.2; the
number of species after two years was nearly identical to the pre-defaunation level.

The physical framework is shown in Fig. 1.3. Organisms from the mainland
species disperse randomly. If an individual of a species not currently on the island
intersects the island, that constitutes a colonization of a new species. If all of the indi-
viduals of a species on the island die, then the species has gone extinct. Consequently,
the number of species on an island is the result of two processes: colonization and
extinction.
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Figure 1.3: Physical picture of island biogeography theory. Organisms colonize randomly
(arrows). Islands can vary by their distance to the mainland {near or far} and their size (large
or small).

1.3.2 Theory

There are many approaches to the problem of describing the numbers of species on
islands. For example, we could take Fig. 1.3 literally by mathematically creating a
two-dimensional picture of a particular mainland and set of islands. We could then
mathematically describe the movement of individuals of all species as they attempt to
colonize the islands with random flight paths. This approach could incorporate exten-
sive ecological and behavioral realism. Alternatively, we could simplify the figure by
ignoring individual organisms, writing equations for the populations of each species
on each island. MacArthur and Wilson (1967), however, took an even simpler ap-
proach. They simplified the problem by abstracting away populations of species and
considered the system (S in Fig. 1.1} to be the number of species on an island, with-
out regard to the numbers of organisms in the species. Thus, they describe a dynamic
theory of biogeography in which the numbers of species is a balance of two processes:
immigration and extinction. The rates of both processes depend on the number of
species currently on the island. The net rate of change of species is the sum of these
two “forces.” When immigration is greater than extinction, the number of species
increases; the number decreases if the opposite is true.
‘We make two very simple biological hypotheses concerning these processes:
¢ Individuals of each species have a constant probability of arriving at the island
and this probability is identical for all individuals and all species. The rate of
immigration (/) of new species only occurs upon the arrival of an individual of
a species not currently on the island.

o The probability of extinction of any single species is constant. Consequently,
as the number of species on the island increases, the probability that any one
species goes extinct increases. Thus, the total rate of extinction (E) increases
with R (number of species on the island).

Figure 1.4 graphically illustrates these hypotheses. In this figure, R is the number
of species on the island, P is the number of species on the mainland (in the “pool”). We
use the equations for a straight line to represent the rate of colonization and extinction.
Immigration of new species decreases because as species accumulate there are fewer
species that can be new. In the limit, if an island has as many species as the mainland,
the rate of colonization must be 0. Extinction increases because on islands with many
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Figure 1.4: Quantitative relationships between number of species on an island (R) and
rates of immigration (I) and extinction (E). P is the number of species in the mainland pool
of species.

species, the total number of species going extinct will increase if there is a constant
probability that any one species goes extinct.

These hypotheses (which might be based on data and prior knowledge) have sim-
ple mathematical expressions. The simplest model is a straight line in both cases.

I=I-(/P)R
E = (E,/P)R.

where I, is the maximum colonization rate, and E, is the maximum extinction rate.

We assemble these hypotheses into a single equation that describes the number of
species on the island. For simplicity, we will consider time to be discrete, but later we
will use continuous time.

Ry =R +1,-E,
=Ry + I, — (I;/P)R, — (E+/P)R;. (1.1

Equation 1.1 mathematically represents our hypothesis that species dynamics are based
on the relative strength of two processes: I, (causing numbers to increase) and E,
(causing numbers to decrease). These types of data are difficult to collect in natural,
field situations, but are possible in laboratory settings. Figure 1.5 is one such data set
obtained from a classroom physical simulation of the colonization process (Haefner
et al. 2002). In that exercise, organisms are the labeled lids of petrie plates. Using a
mainland pool containing 20 different “species,” students throw the lids at islands on
the ground in front of them and measure the immigration and extinction rates during
the “colonization” process. The linear regression lines for immigration and extinction
rates are shown in Fig. 1.5a. Substituting these into Eq. 1.1 yields:

Riy1 = R + (8.963 — 0.395R,) — (—0.011 + (0.0656)R,). (1.2)

The use of the regression equations, which are strongly influenced by the considerable
statistical variation of the data, has some interesting implications for this model that
are to be explored in the exercises.

Several interesting results can be obtained from Eq. 1.2. First, we can iterate the
equation by assuming an initial value of R, (e.g., Ry = 0). Then, use the equation to
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Figure 1.5: Data and results from a simulated biogeographical experiment. (a) Immigra-
tion rate (I, numbers/time, solid diamonds) and its best fit regression line (solid line). Also
shown are Extinction rate (E, numbers/time, open circles) and its regression line (dashed
line). (b) Observed and predicted number of species by iterating Eq. 1.2 using two estimates
of parameters.

obtain R;; insert this value on the right-hand-side of Eq. 1.2 and again use the equation
to obtain R,. Repeat this process indefinitely. For this simple equation, a calculator or
spreadsheet is adequate. Once iterated, we can compare predictions with observations
to test the adequacy of the model. Alternative models can be compared to the same
data. For two sets of parameter values (i.e., the numerical constants in Eq. 1.2), Fig.
1.5b shows the performance of the model to observed data. See Exercise 7 to think
about the reasons for different parameters.

( MBS-CD contains SimIslandBiogeog FD code implementing this model.] .n,

The second calculation we can make with Eq. 1.1 is to compute the equilibrium
number of species on the island. This process is an important part of model analysis
that we will discuss in later chapters, but for now the equilibrium number of species
is that number at which the number of species is not changing. It is the number of
species (R) at which R,y = R,. We can compute this number by subtracting R, from
both sides of Eq. 1.1 and solving for the R, that remains on the right-hand-side, which
we refer to as R:

0=1I,~ (/PR - (E./P)R.

This example illustrates the basic concepts to be developed in this book. First
and foremost, the example shows the relation between the underlying biological hy-
potheses about mechanisms (Fig. 1.5a) and the immediately observable dynamics (Fig.
1.5b). When the purpose of the model is understanding (as it is in this example), then
the central modeling problem is to develop quantitative hypotheses (representing the
system S in Fig. 1.1) that explain the dynamics (response R in Fig. 1.1). An ac-
tual, alternative control use of the model is to address the question: What island-like
conservation preserve design produces more species: a Single Large one, or Several
Small, inter-connected ones? This problem is known as SLOSS (Simberloff 1988).
Using the model for prediction we might want to predict how long it will take an is-
land to recover if a disturbance at ¢ = 10 (Fig. 1.5) reduces R by 50%. Second, the
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example illustrates the mechanics of translating verbal hypotheses into mathematics
and quantitative predictions using specific numerical values of parameters. And third,
it demonstrates that models can be wrong when compared to data and that we must
choose between alternatives (e.g., different parameters in Fig. 1.5b).

1.4 Classifications of Models

1.4.1 Forms of Models

Not all scientific models are precise, numerical, or quantitative. There are four forms:

1. Conceptual or Verbal — descriptions in a natural language.

2. Diagrammatic — graphical representations of the objects and relations (e.g., eco-
logical “box-and-arrow” diagrams of energy flow, physiological diagrams of
metabolic pathways such as the Krebs cycle).

3. Physical - a real, physical mock-up of a real system or object (either larger or
smaller: a “tinker-toy” model of DNA or a scale model of an airplane for a wind
tunnel).

4. Formal — mathematical (usually using algebraic or differential equations).

Our primary interest here will be in (2) and (4).

1.4.2 Mathematical Classification

The mathematical equation used to describe island species dynamics (Eq. 1.1) is
known as a recursive finite-difference equation. It is only one form that a model could
take. To show the scope of the range of mathematical models that are potentially
applicable to biological systems, we construct a simple classification of mathemati-
cal models. The basis of the classification is whether the mathematics incorporates
(or not) a particular mathematical structure. In some cases, it is a matter of opinion
whether the mathematics displays the character or not.
1. Does the mathematics have an explicit representation of mechanistic pro-
cesses?
YES: Process-oriented or mechanistic models (e.g., hydrology models using
Newtonian physics and chemistry, or population dynamics models with details
of reproductive physiology).
NO: Descriptive or phenomenological models (e.g., the island biogeography
model, Boyle’s law relating temperature, pressure, and volume, or a density-
independent population dynamics model with reproduction represented as a sin-
gle parameter).
2. Does the mathematics have an explicit representation of future system states
or conditions?
YES: Dynamic models (e.g., island biogeography model).
NO: Static models (e.g., linear regression equation relating variables x and y).
3. Does the mathematics represent time continuously?
YES: Continuous models, time may take on any values (e.g., 3.3 sec).
NO: Discrete models, time is an integer only. '



