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Summary. Modeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods
have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article,
we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model,
differing only in the intercept term, which is scale-dependent in MAXENT. We illustrate a number of improvements to
MAXENT that follow from these relations. In particular, a point process model approach facilitates methods for choosing
the appropriate spatial resolution, assessing model adequacy, and choosing the LASSO penalty parameter, all currently
unavailable to MAXENT. The equivalence result represents a significant step in the unification of the species distribution
modeling literature.
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1. Introduction and Background
Species distribution modeling (SDM), where the goal is to
explain the occurrence of a species using a set of environ-
mental variables, is an important goal in ecology. This is a
fast-moving field; in fact ISI’s Essential Science Indicators
(July 2012) identifies SDM as one of the top five ranked re-
search fronts in ecology and the environmental sciences. One
potential reason for such high interest is that SDM aims to
address important topical questions such as the potential ef-
fects of climate change on species distributions (Thullier et al.,
2008). Rapid progress in this field has been facilitated by re-
cent significant technological advances in remote sensing, GIS
(O’Sullivan and Unwin, 2010), and computational power, en-
abling models to be built at increasingly fine resolutions and
increasingly large spatial scales.

Ideally, an SDM could be constructed using systematically
collected presence/absence data so that logistic regression
(McCullagh and Nelder, 1989) and its extensions (Hastie and
Tibshirani, 1990; Elith, Leathwick, and Hastie, 2008) may be
used. However, the best available data often come not from
systematic data but from lists of locations where a species
is reported to be present, with no corresponding information
about where a species is reported to be absent (Pearce and
Boyce, 2006). This type of data, known as “presence-only”
data, is typically found in museums, herbaria, and atlases
(Pearce and Boyce, 2006).

An example used throughout this article is a list of 95 lo-
cations (NSW Office of Environment and Heritage, 2010) of
Sydney eucalypt Corymbia eximia observed between 1990 and
2008 within 100 km of the Greater Blue Mountains World

Heritage Area, Australia(Figure 1a). We would like to model
the distribution of C. eximia as a function of climatic and
fire history variables in order to explore the nature of as-
sociation of each of these variables with occurrence of this
species.

MAXENT (Phillips, Anderson, and Schapire, 2006), based
on a maximum entropy approach, is particularly common
in SDM, having been cited 378 times in 2011 according to
Google Scholar. Its rise in popularity has been meteoric, hav-
ing only been introduced to ecology 6 years ago, although the
concept of maximum entropy modeling has been around for
a long time (Jaynes, 1957). A comprehensive study of cur-
rent SDM methods found MAXENT to outperform nearly all
other methods (Elith et al., 2006), and this may explain its
prevalence in the literature. Nevertheless, MAXENT has a
number of shortcomings, as demonstrated in Sections 3 and
4. In particular, it is unclear what diagnostic tools may be
used to assess whether the fitted model is reasonable. More-
over, MAXENT analyzes data after first aggregating them
into presence/absence grid cells (as in Figure 1a), and it is
currently unclear what spatial resolution should be used when
constructing these grid cells. Further, some key components
of the output such as the intercept and fitted probabilities
are dependent on this choice of spatial resolution (“scale-
dependence”).

In this article we show that MAXENT is mathemati-
cally equivalent to Poisson regression (McCullagh and Nelder,
1989) and related to a Poisson point process model (Warton
and Shepherd, 2010). Relationships between maximum like-
lihood and maximum entropy have been known for a long
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Figure 1. Comparison of point process and MAXENT analyses of Corymbia eximia data.(a) Response variables for C.
eximia: a Poisson point process model (left) or an area-interaction point process model (left) analyzes presence points yP

= {y1 ; . . . ; ym} MAXENT (right) analyzes presence/absence in grid cells {g1 , . . . , gn}, with n = 258 here. A key issue with
MAXENT is determining how many grid cells n to use for analysis. (b) Predicted species distribution maps for an area-
interaction model (left) and MAXENT (right). This figure appears in color in the electronic version of this article.

time—this relationship was explored for exponential families
in the late 1950s (Kullback, 1959), while an equivalence for
contingency tables was established in 1963 (Good, 1963), and
maximum entropy was later linked to the maximum likeli-
hood of a Gibbs distribution (Della Pietra, Della Pietra, and
Lafferty, 1997). Nonetheless, the direct link we make in this
article between MAXENT and Poisson point process mod-
els is new. Warton and Shepherd (2010) introduced Poisson
point process models as a way to address “problems of model
specification, interpretation, and implementation” inherent in

pseudo-absence regression, another popular method of SDM.
This article achieves a similar goal in relation to MAXENT—
all of the problems described in Sections 3 and 4 can be ad-
dressed by reframing the problem using a Poisson point pro-
cess model. Section 2 demonstrates the equivalence of Poisson
point process models and MAXENT. Section 3 demonstrates
by example how this equivalence can improve on current prac-
tice in MAXENT modeling. Finally, Section 4 demonstrates
that these proposed improvements can led to more accurate
predictions of a species’ actual distribution.
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2. Equivalence of MAXENT and Poisson Point
Process Models

The goal of SDM is to link the location of species pres-
ences to some number p of environmental variables. Let
yP = {y1, . . . , ym } be presence-only locations for a particular
species over some region A and x(y)′ = {1, x1(y), . . . , xp (y))}′
be the vector of p environmental variables corresponding to
location y in the study region A. We fit an SDM by regressing
the y ∈ A against the x(y), using one of a few methods.

Rather than using the presence-only locations yP =
{y1, . . . , ym }, the MAXENT procedure analyzes data by
splitting A into n grid cells with centers at the loca-
tions in g = {g1, . . . , gn }. A binary response vector z(n )(g) =
{z(n )(g1), . . . , z(n )(gn )} is formed where z(n )(gi ) = 1/m(n ) if
the ith grid cell contains at least one presence location and 0
otherwise, and m(n ) is the count of grid cells that contain at
least one presence location. Without loss of generality, we par-
tition {g1, . . . , gn } as {gP , g0}, where gP = {g1, . . . , g

(n )
m } are

the m(n ) presence cells. We index z and m with the superscript
(n) to emphasize that these quantities depend on the spatial
resolution used for resolution (hence the number of grid cells
n) used in analysis.The goal in MAXENT is to model π(gi ),
the probability that if there is one presence then it is located
in the ith grid cell. π(g) = {π(g1), . . . , π(gn )} is estimated to
maximize the entropy H{π(g)} = −∑n

i=1 π(gi ) ln π(gi ), sub-
ject to two types of constraint:

n∑
i=1

π(gi ) xj (gi ) =
1

m(n )

m (n )∑
i=1

xj (gi ), ∀j, (1)

n∑
i=1

π(gi ) = 1. (2)

Equation (1) ensures that the predicted mean of each envi-
ronmental variable equals its observed mean for the presence
data while (2) ensures that the probabilities add to 1.

We will show that the MAXENT procedure is equivalent
to Poisson regression when applied to grid cell data z(n )(g).
That is, we model the mean of z(n )(gi ) as a log-linear model:

ln μi = x(gi )′β. (3)

We estimate the parameters β to maximize the likelihood
function (McCullagh and Nelder, 1989):

l{β; z(n )(g)} =
n∑

i=1

z(n )(gi ) ln μ(gi )

−
n∑

i=1

μ(gi ) −
n∑

i=1

ln{z(n )(gi )!}. (4)

On face value, this analysis appears to be based on a nonsen-
sical model for the data, as it implicitly assumes that a set
of noninteger values comes from a Poisson distribution. How-
ever, we will show first that this is precisely what MAXENT
does and later that this can be motivated as a point process
model, which can be fitted for a noninteger response using the
result of Berman and Turner (1992).

Theorem 1. The MAXENT procedure and Poisson regres-
sion are equivalent. That is,

1. They fit the same model:

ln π(gi ) = ln μ(gi ) = x(gi )′β.

2. They estimate parameters to maximize the same function
up to a constant:

Λ{β; z(n )(g)} = l{β; z(n )(g)} + C,

where C is a constant and Λ{β; z(n )(g)} is the Lagrangian
function to maximize entropy H{π(g)} subject to the con-
straints stated in equations (1)–(2). Hence the maximum
entropy estimate β̂MAXENT equals the maximum likelihood
estimate from Poisson regression β̂GLM .

The proof of Theorem 1 appears in Web Appendix 1. Part 1
of Theorem 1 (that MAXENT fits a log-linear model) is well
known (e.g. Dutta, 1966), but Part 2 (the link to Poisson re-
gression) is new. This link to Poisson likelihood was enabled
by specifying the MAXENT model in a slightly different way
to what is conventional in the maximum entropy literature.
It is typical to exclude the intercept term from the model and
introduce a normalization constant in its place after optimiza-
tion to ensure that the sum of π is one. Instead, we included
an intercept term and the constraint of equation (2) to the
optimization problem, which was the key to our derivation.
Hence we have shown that some maximum entropy problems,
including MAXENT, can be solved using standard generalized
linear modeling software via Poisson regression, which can ac-
commodate a large number of predictors. We demonstrate
this result numerically in Web Figure 1. Further, this enables
a link with Poisson point process models below.

A Poisson point process regression model (PPM) analyzes
m presence-only locations yP = {y1, . . . , ym } as a point pro-
cess in which the locations of the m points are assumed to
be independent. Unlike MAXENT, which models probability
π(gi ) per grid cell, a Poisson PPM models the limiting ex-
pected count (λ(y), the “intensity”) per unit area (Cressie,
1993) for any location y ∈ A. Intensity is modeled as a log-
linear function of p explanatory variables: ln{λ(y)} = x(y)′β.
An analysis on a per area basis rather than a per grid cell
basis is a key distinction between a point process model and
MAXENT.

The log-likelihood of a Poisson point process model
(Cressie, 1993) is:

l(β;yP ) =
m∑
i=1

ln λ(yi ) −
∫

y∈A
λ(y)dy − ln(m!). (5)

By using numerical quadrature (Davis and Rabinowitz, 1984),
the likelihood expression for yP can be approximated as a
weighted Poisson likelihood (Berman and Turner, 1992):

lppm(β;yP ,y0,w) ≈
n∑

i=1

wi [zw ,i ln{λ(yi )} − λ(yi )], (6)

where y0 = {ym +1, . . . , yn } are quadrature points and zw ,i =
I (i∈1, . . . ,m )

w i
for quadrature weights w = {w1, . . . , wn }, and I(·)

is the indicator function. A natural way to choose quadrature
points is to break the region A into a regular grid and insert
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a quadrature point at the center of each cell, meaning that
y0 = g0. Each cell can then be assigned a quadrature weight
which equals its area divided by the number of locations in
{yP ,y0} contained in the cell.

An alternative representation of the point process likeli-
hood, suggested during review, was to use I(i ∈ 1, . . . , m) as
the response and ln wi as an offset term. This would produce
a likelihood expression proportional to (5), but without the
need for a noninteger response.

We find a relation in Theorem 2 between MAXENT and the
above formulation for Poisson point process models by ana-
lyzing data at grid cell locations {gP , g0} instead of {yP ,y0}.
That is, we use in the analysis the same quadrature points
y0 = g0, but use the locations of the m(n ) presence grid cells
gP in place of the m actual presence locations in yP . This
results in some loss of information, discussed in Section 3.

Theorem 2. Consider a Poisson point process model fit-
ted to grid cell data z(n )(g), with parameter estimates stored in
β̂PPM.Then:

β̂MAXENT = β̂PPM + JC ,

where JC = {ln C, 0, . . . , 0} is a vector of length p + 1, and
C = |A|/(m(n )n).

In other words, the MAXENT and PPM solutions for grid
cell data are proportional, and estimates of slope parameters are
identical.

The proof of Theorem 2 appears in Web Appendix 1.

Corollary 1: For a given presence-only dataset
yP ,consider a set of vectors of grid cell data constructed
at increasingly fine spatial resolutions (e.g.,by recursively
partitioning {z(n )(g); n = 1, 2, 22, 23, . . .}). As n → ∞, the
MAXENT solution for z(n )(g) becomes proportional to the
Poisson point process model solution for yP . That is:

β̂MAXENT − JC → β̂,

where JC is as defined in Theorem 2.

The proof follows by noting that as n → ∞, the number
and location of presence points in gP approach those in yP

and the quadrature approximation of (6) approaches the exact
solution in (5).

This result is similar to Theorem 3.2 of Warton and
Shepherd (2010), who showed that when fitting a Poisson
PPM with constant quadrature weights C , ignoring these
weights changes the solution by the factor C . MAXENT can
be represented as a Poisson point process model ignoring
quadrature weights, so a similar result applies. These quadra-
ture weights are the mechanism that ensures that analysis
is performed on an area basis instead of a grid cell basis
(Warton and Shepherd, 2010). Hence while Poisson point pro-
cess model and MAXENT solutions are qualitatively identi-
cal, analyzing data on a grid cell basis instead of an area basis
induces scale dependence in MAXENT: as n → ∞, π(gi ) → 0.
Hence the maps in Web Figure 2 look the same, but only for
the Poisson point process models is the scale unchanged by
changing spatial resolution.

3. Model Application
We will now demonstrate the application of a point process
model to the presence-only locations of Corymbia eximia, il-
lustrating many features currently unavailable to MAXENT.
Software for the below analyses including example data will
be available in the R package ppmlasso. Our analysis will
consist of four steps: (1) determine the appropriate spatial
resolution for analysis; (2) assess whether a Poisson point
process model is appropriate; (3) estimate the LASSO param-
eter (Tibshirani, 1996) for regularization; and (4) compare
results with a MAXENT model. We use four environmen-
tal variables as in Warton and Shepherd (2010)—minimum
and maximum temperature, number of fires since 1943, and
annual rainfall. Likelihood of observing a presence point de-
pends not just on the spatial distribution of the species, but
also on the spatial distribution of observers, which is strongly
affected by site accessibility. Hence we include two variables
to measure site accessibility—distance from main roads and
distance from urban areas. Intensity of C. eximia was modeled
as a quadratic function of the six available variables, including
interactions between the four environmental variables and be-
tween the two accessibility variables (but assuming additivity
between environmental and accessibility variables). So long as
all six of these variables are independent of variables associ-
ated with species detection probability, parameter estimates
from a Poisson point process model will be consistently esti-
mated (Dorazio, in press).

Prior to applying the LASSO to point process models, vari-
ables were standardized to have mean 0 and variance 1 as in
Tibshirani (1996), such that the LASSO penalty was applied
to standardized coefficients. In MAXENT, variables were in-
stead standardized to have minimum 0 and maximum 1.

3.1 Choosing the Appropriate Spatial Resolution
NSW Office of Environment and Heritage (2010) provides en-
vironmental data over the study region at the 100 m resolu-
tion. However, performing an analysis at such a fine resolution
is computationally expensive and may not be necessary. Using
a Poisson point process model specification facilitates the use
of a numerical integration framework for choosing an appro-
priate spatial resolution for a particular species. As the ab-
sence grid cells g0 are used as quadrature points, the question
of what spatial resolution needs to be used can be rephrased
as a question of how many quadrature points are needed to
obtain a sufficiently accurate estimate of the log-likelihood.
The same idea was used in Warton and Shepherd (2010) to
clarify the role of pseudo-absences in presence-only analysis,
and how their number and location can be chosen.

Following Warton and Shepherd (2010), we add quadrature
points at increasingly fine resolutions until the log-likelihood
has converged. For Corymbia eximia, the likelihood appears
to converge at a spatial resolution of 800 m (Figure 2a), sug-
gesting that model output will not appreciably change at
finer spatial resolutions. However, the entropy of analogous
MAXENT models does not converge due to the scale depen-
dence of π(g) and hence MAXENT is not very informative
about which spatial resolution to use for analysis. The scale
dependence of MAXENT can be adjusted for in part (using
“gain,” defined as ln n - entropy), but not completely, since
the loss of information incurred by absorbing the m presence
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Figure 2. Model checking for the Corymbia eximia analysis: (a) Spatial resolution can be chosen for a point process model
from a plot of maximized log-likelihood at differing spatial resolutions. Convergence is achieved at the 800m resolution for
the Poisson point process model, suggesting this is the optimal spatial resolution at which to perform analysis. There is no
convergence for the entropy used by MAXENT. We can attempt to address this by analyzing “gain” (defined as ln n - entropy),
but gain (rescaled) does not converge until the number of presence cells m(n) converges. (b) Inhomogeneous K-function (solid
line), with 95% simulation envelope (shaded area), for a Poisson point process model (left) and an area-interaction model
with radius 1 km (right). The deviation from the envelope for the Poisson point process model suggests additional clustering
unaccounted for in the model. This figure appears in color in the electronic version of this article.

locations into a smaller number m(n ) of presence grid cells
varies with the choice of spatial resolution. Hence the gain
will not converge until m(n ) converges.

3.2 Is a Poisson PPM Appropriate?
The underlying assumption of a Poisson point process model
(and by equivalence, MAXENT) is that the point locations
are independent, conditional on model covariates. This may
not be appropriate for Corymbia eximia. While MAXENT
offers no method for checking this assumption, there are a
number of diagnostic tools to assess model adequacy of a
Poisson point process model (Cressie, 1993; Baddeley et al.,
2005). One such method is to construct the inhomogeneous
K-function (Baddeley, Møller, and Waagepetersen, 2000) and
corresponding simulation envelope (Diggle, 2003) of the fit-
ted model. In Figure 2b, it can be seen that for C. ex-
imia, a Poisson point process model may not be suitable
for the data, as the inhomogeneous K-function falls well

outside a 95% envelope formed by simulating 1000 realiza-
tions from a Poisson point process model with intensity func-
tion as estimated from the C. eximia data. The deviation
above the envelope suggests that the presence locations of
C. eximia are more clustered than would be expected for a
true Poisson point process model. Instead, Figure 2b demon-
strates that an area-interaction model (Baddeley and van
Lieshout, 1995) with radius 1 km is more appropriate, which
we fit using a Poisson pseudo-likelihood as in the spatstat

(Baddeley and Turner, 2005) package of R. There is built-
in code in spatstat for fitting a large suite of other spatial
processes involving dependence between points (Baddeley and
Turner, 2005; Chakraborty et al., 2011) that may be suitable.

3.3 Choosing the LASSO parameter
MAXENT is often fitted using a LASSO penalty to control
for overfitting. For Corymbia eximia, MAXENT software uses
an ad hoc value of 9

70 for the LASSO penalty parameter (λ),
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Table 1
Current problems with MAXENT and their proposed solutions
available through reexpression as a Poisson point process model

MAXENT problem Poisson PPM solution

Predicted probabilities are
scale-dependent

Predicted intensities are
scale-invariant

How to determine spatial
resolution?

Increase until log-likelihood
converges

How to assess model
adequacy?

Various goodness-of-fit
procedures available

How to choose LASSO
parameter?

Various data-driven
methods

Available in MAXENT
software only

Use any standard GLM
software

130 seconds to fit models in
Figure 1b

12 seconds to fit models in
Figure 1b

which was chosen without any consideration for predictive
performance of the model at hand but rather based entirely on
the number of presence cells (90). Alternatively, some data-
driven criterion could be used to try to choose a λ which
optimizes predictive performance (Tibshirani, 1996; Fu, 2005;
Zou, Hastie, and Tibshirani, 2007). We used a simple line
search algorithm to find the value that minimized nonlinear
GCV (Fu, 2005), which returned a value of 4.907.

3.4 Results
The coefficients for both the point process model and the
MAXENT model (Web Table 1) are qualitatively different due
largely to the different LASSO parameters. Of the 19 model
coefficients, only 11 are nonzero in the point process model, as
opposed to 17 for MAXENT. Moreover, the harsher LASSO
penalty of the point process model ensures that each of the
estimated coefficients are smaller than the corresponding co-
efficients of the MAXENT model. Otherwise, the models are
broadly similar and hence the maps produced by both models
identify the same geographic hot spots for Corymbia eximia
(Figure 1b).

3.5 Summary
In analyzing the Corymbia eximia data we have seen a num-
ber of advantages of the Poisson point process model approach
in choosing the spatial resolution, assessing model adequacy,
and choosing the LASSO parameter. These are summarized
in Table 1. Another potential advantage is in assessing model
uncertainty—a point process framework can be used to put
standard errors on model coefficients and predictions, al-
though when using the LASSO in estimation (Fan and Li,
2001) there are some difficulties (Kyung et al., 2010). A final
advantage worthy of mention is in computation time: Figure
1b took 12 seconds to produce for the point process model,
but 130 seconds using MAXENT software (Table 1).

4. Improvements in Predictive Performance
We will now compare the predictive performance of the point
process approach described in Section 3 to MAXENT in or-
der to assess whether the refinements we proposed (in partic-
ular, modeling point interactions and data-driven estimation
of the LASSO penalty parameter) improve the performance
of the model. The approach we take is to model Corymbia

Table 2
Predictive performance (measured as average area under the
ROC curve for 20 different fivefold spatial cross-validation

schemes) of different presence-only models for C. eximia when
predicting to a separate presence–absence dataset. Note that

the point process approach proposed in Section 3 has the
highest predictive performance

LASSO penalty Standard
Model criteria AUC error

Poisson PPM No penalty 0.7555 0.0070
MAXENT ad hoc MAXENT 0.8508 0.0060
Poisson PPM Nonlinear GCV 0.8813 0.0051
Area-interaction Nonlinear GCV 0.9066 0.0036

eximia presence-only data and predict to new areas, assess-
ing predictive performance using a separate presence–absence
dataset from 8678 systematically collected transects (NSW
Office of Environment and Heritage, 2010), as in Elith et al.
(2006). This presence–absence dataset may be considered a
“gold standard,” where observers have gone to each of the
8678 sites and specifically noted presences of C. eximia. We
apply a spatial fivefold cross-validation in which sites are as-
signed to 30 square 64 × 64 km spatial blocks that are ran-
domly assigned to test and training samples. We employ this
procedure to minimize the influence of spatial autocorrelation,
which is not considered by MAXENT.

We evaluate the performance of MAXENT and various
models from the point process approach by comparing pre-
dicted intensities at the systematically collected transects
against observed presence/absence, using area under an ROC
curve (Elith and Leathwick, 2007). Table 2 reveals that choos-
ing the LASSO parameter to minimize the nonlinear GCV
performs better than using MAXENT’s default method for
C. eximia for both point process models. Hence, while MAX-
ENT achieves high predictive performance relative to other
methods (Elith et al., 2006), there is the potential to improve
it further by using the data to inform the choice of the LASSO
parameter.

5. Discussion
Some recent papers (Elith and Leathwick, 2009; Aarts,
Fieberg, and Matthiopoulos, 2012) have called for greater
unification and synthesis of the literature on SDM. To that
end, we have demonstrated equivalence of MAXENT and a
Poisson point process model. Warton and Shepherd (2010)
showed the equivalence of Poisson point process models and
pseudo-absence regression, which aside from MAXENT is the
most commonly used approach to presence-only modeling at
the moment. Hence our work represents a significant unifica-
tion of the literature, using Poisson point process models to
link the two most widely used presence-only methods, MAX-
ENT and pseudo-absence regression. This work has signifi-
cant practical ramifications, given that MAXENT (Table 1)
and pseudo-absence regression (Warton and Shepherd, 2010)
have shortcomings stemming largely from the framework used
for modeling, which can be resolved by using a Poisson point
process model instead. Others have made further connections
between point process models and alternative approaches to
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analysis—Aarts et al. (2012) made a connection to the esti-
mation of “resource selection functions” via presence–absence
analysis, and Dorazio (in press) to case-augmented binary re-
gression. Point process models are a natural framework for
analyzing presence-only data and it is interesting that a va-
riety of different methods of analysis can all be connected to
them in some way, and in many instances, improved through
this connection.

A key distinction between point process models and MAX-
ENT is that in the former we model λ(y) on a per area basis
whereas for the latter, we model π(gi ) per grid cell—the per
area analysis is thus invariant under choice of spatial resolu-
tion while the per grid cell analysis is not (because increasing
spatial resolution increases the number of grid cells). This is
related to the distinction between probability and frequency
models (Aarts et al., 2012). It is this distinction that enables
the likelihood convergence for a Poisson point process model
(Figure 2a) and hence a data-driven choice of spatial resolu-
tion. However, MAXENT is proportional to a Poisson point
process model (Theorem 2), which suggests that it can achieve
the same qualitative answer but with the disadvantage of scale
dependence of the predicted probabilities and an arbitrary
choice of spatial resolution.

One important disadvantage of MAXENT is that in its
current form, it does not estimate the intercept consistently
(Elith et al., 2011). The intercept term diverges to −∞ as
spatial resolution increases. Theorem 2 gives the form of the
term causing this divergence. This means that MAXENT as
currently posed cannot predict species intensity for any subset
of the study region A or likewise model abundance in the way
that point process models can.

The new-found ability to use data to estimate spatial reso-
lution (Figure 2a) is of interest for a couple of reasons. First,
the resolution of the process is largely a function of biological
factors and measurement error, and estimating this resolution
informs us about the spatial scale at which such processes are
operating. Second, the resolution of the process is of interest
for computational reasons, because data are becoming avail-
able at increasingly fine resolutions—we originally had access
to 8,620,092 points at the 100 m resolution, but even finer
resolutions are now available —and analysis at such fine res-
olutions can be very computationally intensive. We know of
colleagues analyzing this type of data in biology departments
who have constructed their own parallel computing arrays to
analyze this type of data for multiple species at fine resolu-
tions. Hence it is of considerable practical interest to know
whether such a fine resolution is required, and in our case, it
clearly was not required as we only needed 134,716 quadrature
points and were able to analyze data in seconds on a desktop
computer (Table 1), with negligible loss of information.

An alternative approach to MAXENT analysis of all grid
cells is to randomly select empty grid cells as “background
points” for analysis. This obviates any computational need to
coarsen resolution for analysis. The default approach that has
been advocated (Phillips and Dud́ık, 2008) and implemented
in MAXENT software is to use 10,000 random background
points, which for our data was clearly insufficient (Figure 2a),
equivalent to using a resolution of nearly 3 km. We advise that
as a matter of routine, presence-only analysts should use their
data to identify a spatial resolution appropriate for analysis,

or equivalently, to identify the number of “background points”
to use in analysis.

In Section 4 we demonstrated that point process models
achieve a higher predictive performance for Corymbia eximia
by choosing the LASSO penalty parameter to minimize non-
linear GCV. However, this may not be true of all species.
We are currently investigating the question of how predic-
tive performance varies with different methods of choosing
the LASSO parameter across multiple species endemic to the
Blue Mountains.

While MAXENT has become extraordinarily popular in
ecology, the lack of a model-based framework and diagnos-
tic tools means that it is used rather uncritically and some-
times inappropriately. A key advantage to the point process
approach is that we have a model and can hence check as-
sumptions. We found that a Poisson point process model did
not fit C. eximia well due to violations of the independence as-
sumption, in which case there are many alternative options for
presence-only data (Baddeley and Turner, 2005; Chakraborty
et al., 2011). The suite of diagnostic tools available via point
process models (Cressie, 1993; Diggle, 2003; Baddeley and
Turner, 2005; Baddeley et al., 2005) offers the possibility for
users to think more critically about the appropriateness of the
model they are fitting, which can ultimately have benefits in
model interpretability and performance.

6. Supplementary Materials
Web Appendix 1, Web Figures 1 and 2 and Web Table 1
referenced in Sections 2 and 3 are available with this article
at the Biometrics website on Wiley Online Library.
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